Fission Yeast Hotspot Sequence Motifs Are Also Active in Budding Yeast

نویسندگان

  • Walter W. Steiner
  • Estelle M. Steiner
چکیده

In most organisms, including humans, meiotic recombination occurs preferentially at a limited number of sites in the genome known as hotspots. There has been substantial progress recently in elucidating the factors determining the location of meiotic recombination hotspots, and it is becoming clear that simple sequence motifs play a significant role. In S. pombe, there are at least five unique sequence motifs that have been shown to produce hotspots of recombination, and it is likely that there are more. In S. cerevisiae, simple sequence motifs have also been shown to produce hotspots or show significant correlations with hotspots. Some of the hotspot motifs in both yeasts are known or suspected to bind transcription factors (TFs), which are required for the activity of those hotspots. Here we show that four of the five hotspot motifs identified in S. pombe also create hotspots in the distantly related budding yeast S. cerevisiae. For one of these hotspots, M26 (also called CRE), we identify TFs, Cst6 and Sko1, that activate and inhibit the hotspot, respectively. In addition, two of the hotspot motifs show significant correlations with naturally occurring hotspots. The conservation of these hotspots between the distantly related fission and budding yeasts suggests that these sequence motifs, and others yet to be discovered, may function widely as hotspots in many diverse organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular analysis of kinetochore architecture in fission yeast.

Kinetochore composition and structure are critical for understanding how kinetochores of different types perform similar functions in chromosome segregation. We used affinity purification to investigate the kinetochore composition and assembly in Schizosaccharomyces pombe. We identified a conserved DASH complex that functions to ensure precise chromosome segregation. Unlike DASH in budding yeas...

متن کامل

The fission yeast inhibitor of growth (ING) protein Png1p functions in response to DNA damage.

In budding yeast and human cells, ING (inhibitor of growth) tumor suppressor proteins play important roles in response to DNA damage by modulating chromatin structure through collaborating with histone acetyltransferase or histone deacetylase complexes. However, the biological functions of ING family proteins in fission yeast are poorly defined. Here, we report that Png1p, a fission yeast ING h...

متن کامل

Identification of Human Rap1 Implications for Telomere Evolution

It has been puzzling that mammalian telomeric proteins, including TRF1, TRF2, tankyrase, and TIN2 have no recognized orthologs in budding yeast. Here, we describe a human protein, hRap1, that is an ortholog of the yeast telomeric protein, scRap1p. hRap1 has three conserved sequence motifs in common with scRap1, is located at telomeres, and affects telomere length. However, while scRap1 binds te...

متن کامل

CDK promotes interactions of Sld3 and Drc1 with Cut5 for initiation of DNA replication in fission yeast

Cyclin-dependent kinase (CDK) plays essential roles in the initiation of DNA replication in eukaryotes. Although interactions of CDK-phosphorylated Sld2/Drc1 and Sld3 with Dpb11 have been shown to be essential in budding yeast, it is not known whether the mechanism is conserved. In this study, we investigated how CDK promotes the assembly of replication proteins onto replication origins in fiss...

متن کامل

Histone H3 lysine 4 methylation is mediated by Set1 and promotes maintenance of active chromatin states in fission yeast.

Methylation of histone H3 at lysine 4 (H3 Lys-4) or lysine 9 (H3 Lys-9) is known to define active and silent chromosomal domains respectively from fission yeast to humans. However, in budding yeast, H3 Lys-4 methylation is also necessary for silent chromatin assembly at telomeres and ribosomal DNA. Here we demonstrate that deletion of set1, which encodes a protein containing an RNA recognition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012